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I. INTRODUCTION

A great deal of attention has been focussed on the study of

parametric processes in plasinas because of their importance to both

laser— and beam—plasma interactions, as well as to anomalous heating

mechanisms. The thrust behind the present work is directed towards an

understanding of the parametric stabilization of beam—plasma inter-

actions. In all such processes, the underlying concept is a three wave

interaction in which a large amplitude pump wave (w
0, J~,) excites two

new waves (Wi, 
~~ 

and w2 , ~ 2) subject to the requirements that

= w1 ± ~~~ 
and = ± J~ . In the case of beam—plasma systems,

stabilization can occur due to the nonlinear transfer of energy away

from beam resonant modes via a parametric coupling of high and low

frequency waves. Recent work in this regard~~
5 has dealt largely with

unmagnetized systems, in which a wave—particle resonance is possible

only for longitudinal electron plasma oscillations. Nonlinear coupling

proceeds, therefore, between high frequency Laugmuir and low frequency

ion acoustic waves, and may be treated within the context of the

electrostatic approximation.

The instability which arises from the interaction of a large

amplitude Langmuir pump wave and secondary (or daughter) Langmuir and

ion acoustic waves has been extensively studied in the llterature6 9  in

a field—free plasma, for which two fundamental regimes of interest are

found. One case occurs for w > w~ and I~ I>I~i I (where we use w
~, J~

to denote the secondary Langmuir wave), and is referred to as the para-

metric decay instability. In the opposite case in which < w~ and

I ~ I < I ~i I ’  the oscillating two stream instability is obtained. We

Note: Manuscript submitted May 17, 1979.
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observe that the phase velocity of the secondary Langmuir wave is

greater  ( less)t l~an that  of the pump wave for  the parametric decay

(oscillating two strean) instability.

It is Luir purpose in this work to study the effect of weak

magnetic fields upon the oscillating two stream and parametric decay

instabilities. In particular , we are concerned with the effect of the

magnetic field on the angular variation in the instability thresholds

and growth rates. Direct application of the work is primarily to the

physics t~ f electron streams in the solar wind , and on type III solar

bursts 1’3 in particular. In addition , since the equations governing

the oscil lating two stream and parametric decay instabilities are the

Fourier transforms of the equations governing Langmuir solitons , the

work has implications on the characteristics of Langmuir solitons In

a weakly magnetized plasma .

The organization of the paper is as follows. In Sec . II , we

define the physical configuration to be employed and derive the basic

equations governing the nonlinear coupling between Langmuir and ion

acoustic waves. These equations are solved in Sec . III for both a

dipole and monochromatic pump spectrum , and a numerical analysis is

presented . A sunnnary and discussion is given in Sec . IV.

2
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11. THE BASIC EQt’ATIONS

The fundame ’ntai equations which describe the dynamical behavior of

the system are generalizations of Zakharov ’s equations for Langmuir

sot Itons 10 t o  a physic al configuration which includes a uniform ambient

magneti c field 
~~~~~ ( ~~~~~~ We write the ion and electron density in the

fo rm n — n + Sn and n — n + ~n + ~n where n is the ambient densi—1 o C 0 C 0

tv , ~n denotes the low frequency fluctuation In the ion and electron

densities , .ind ~n is the h i g h  frequency component of the electron

density perturbati on. In addition , we assume tha t there is no bulk

h o w  of either elec t rons or ions , and emp loy ~u and ~u to describe

the slow perturbations in the ion and electron velocities, and iSv to

describe the fast electron velocity fluctuations . Finally , ~ and

are used to  den ote the low and hi gh f requency  componen t s of t he

el ectric field perturbations.

The first consider the equations which describe the high frequency

oscillations. In this c a s e,  the electron continuity and momentum

t ransfer equations , as well as Poisson ’s equations , can be written to

lowes t order as

-
~ I (I~fl \-— iSn + n ( 1 + — I V  ~~ — 0, (1)
~t e o~ n :

‘ 0,

- - - 

~~~ 
(i + 

~
_
fi

’
v
~

n , - 

~ 

( 2 )

V • — — 4i~eiSn , (3)e

3
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where V (Te~me)
½ denotes the electron thermal speed , and

12 E leB fin c~~. It should be noted here that second order terms ine 0 e

and 
~~e 

have been neglected in (1) and (2). Elimination of 6
~e 

and

from (1) — (3) yields , after some manipulation , the following

resul t

- 
~~~~~~~~~~~~ 

+ ~2(l + ~ 1)_3u
2X2V2 + 122] _3w~ X2V~)iS~ -

— — W 2 122(l + ~-ii) V
(( 

‘ cS~~, (4)

where ~~ 4iie2n / m , A V
e/We~ 

and . V ) .  If we no te tha t

• — V~ V • 6~~, then it is clear that

(-~~7 [~
-
~
-7 + u~ (l-3X

2V2) ÷ 12 2] + w v
1~
(l_3X ~ V

2
))iS~

= — ~~ (~~~
-2- + ~~~~. (5)

Af ter Fourier transformation in space , (5) becomes

i i 2
a 2 rip

+ (u~ + 122) ~~~~~~~~ + ~~ w~ 12~ ~~(J~,t) =

2 k~ 6n(~ —~~’,t)
= - 

~~~~~~ 
+ ~~~~~— ~2) fd

3k ’ — --iS
~~(k ’ , t ) ,  ( 6)

where w2(i + 3k 2A 2), ~~~~~ t) and iSn(~~,t) are the spatial Fourier

amplitudes associated with the wavevector ~~ , and k11 ~ •

4



The fourth order linear differential operator on the left-hand—side

of (6) can be wri tt en as the prod uc t of two second order d i f fe r en t ial

operators (3 2 / a t 2 + ~~) (a 2 / a t 2 + w2,), where

F 2 k~ 1½
W

1 2  
= 4 (w ~ + ~~~) ± 4 [~

w~ + 12~ ) - 4 
~~ • ( 7 )

and reduces to the usual cold plasma resonance frequencies in the limit

T
e 

-
~ 0. Substantial simplification occurs only in the l imi t in which

122 <<  w2 ~ u~~, wher e (f or k~ E k2-k~ ) u~ + (k~ /k 2) 122 and

(k~ /k 2)c’2 correc t to within terms of order (S2 /u )~~. in this

regime , Eq. (6) can be written in the comparatively simple form

(~L~ + + — 122 ) 6 ~~U~, t )  — fd
3k ’ i Sn (~ —~~’ , t ) i S~~(~~’ , t ) .  (8)

Finally, if it is assumed that iS~~(~~,t) = Re [iS~ (~ ,t) exp(-~w~t~ , where

= 

~~c(k , t) and I (3’~
3t)6t ~t )I<< w IiSt:(~;, t )I , then it follo~•’s

that

~i~~i_ ~~~ We
(kA

e)
2 - 4 ~~

._
~ )iSc(~~i t) 

_
~~~_ fd

3k1 (~4)
x iSn(J~—~~’,t) iS~~(~~’ , t )  (9)

for (kA )2 << 1.

In the treatment of the slow frequency ion oscillations we assume

that the wave frequency is much greater than the ion gyrofrequency and

the wavelength is much less than the ion Larmor radius. In such a

regime the ions are effectively unmagnetized , and we wri te the ion

continuity and momentum transfer equations

L _ 
5
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5n + n
0 

V - — ~~, (10)

n m
1 

= en~~ — V~~ — Vón. (11)

If i t  is assumed , in addi tion , that the wave frequency w << k11v , then

the low frequency elec tron response can be described by

O — — en~~ — — ‘feTe’~~~* (12)

where the electron inertia has been neglected . In (11) and (12),

~~~~~, ~~~~~, and T (cz i , e) are the  ion and e lect ron  ponderomotive

potentials , ratio of specific heats , and temperatures respectivel y.

Combination of (11) and (12) immedia tely yields

(
~~~ 

_c
~~ iSn = ~~~~~~~ + ~ ) ,  ( 13)

where c2 (-y 1
T1 + 

~e
Te

’
~
m i is the acoustic velocity. It can be

shown fl , 2 2  tha t  the  ponderomotive potent ia ls  are g iven by

= (m . /m )$~ = S~~~/8~ correct to within terms of order (12e/~
I eF~ 

and

As a resu l t , we may write that

(
~

_

~
- +  k~ c) i Sn (k , t )  = — 

16~~ J

’
d 3k ’  ~~~~~~~~~~~~~~ (k k’ ,t)

x iSr (~~’,t) + 0 (
~~

. , k2 A~). 
(14)

e

6
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Equations (9) and (14) constitute a pair of coupled nonlinear

equations for the high and low frequency perturbations . In order to

linearize these equations we assume that ~c(~~,t ) = c ( ~~,t) +

where and 5c~ represent Langau ir pump and daughter waves

respec t ivel y and it is assumed that ~~ is a small perturbation . The

pump spec trum is taken to have a width ~k centered about ~~~ , ard for

suf ’~icien tlv small ~~~~ we obtain

~~~~~~~~~~~~~~ ~~~~~~)Sc i (~~,t )  ~~~~fd
3k~~(~~~~~)

~ dn (k-k
’ ,t)t (k’ ,t), (15)

and

(
~~

. + ~n (~~,t) = - 
16~~~~~ fa

3k ’ 
~~~~~~~~~~~~~~~~~~~~ 

(co(~~
’~~t)~~~~(k_k’~~c)

+ c~ ~~~~~~~~~~~~~~~~~~~ 
(16) V

7
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I I I .  fl~~ D I S P E R S I O N  EQ~ A T I oN

ftc dis~’ersion equat ion may be obta in~ J fr om Eqs. (15) and (16)

by means of Green ’s functio n techni ques , and w~ wri te

(: +~ 
- . 

~e~~~
t t ’) -

( 17)

(H~ ± ~.
:c~
) 

G ~~, :—t ’~ = —

~ ~ef  1:~c :or conveflje~ ‘e

-. 3 - ‘  ~~~~~~~~ c

e
C

ion c’~ ( i 5~ — (U’~ r e a d i ly  shows that

= dtfd~ k’ k’ k~~~’~~ 
~~ (~~.t- t ’ )

( lS~

( 19)

If  we no~c write c (~~,t) = c ( ~~) exp(i kt) and el iminate 5c~ f r o m

(18 ) and (19~~, ~e f i n d  af t e r  some lengthy manipulations that

S

~

. .. . . . - - . —-.-.-.. .
~~ 

, . —.— ...- —— -.~~.-~~ -—-—.—.—-—.-—-——-.—.-.—. .-—— ~~~~~~~~~~~~



—-
~~~~~~--~~~~~~~~~~~~~ -- __

r

(
~ 

+ k2c2) iSn (~~,t) = 6 4 2 rn
e 

f 
dt ’6n(~~,t ’)  fd

3k ’ Ic (~~~)~~
2

~ (~ -~~‘,t-t ’)exp[ic2~ ,(t ’-t)]

~~~~~~~~~~~~ 1
+ 

~ T1~+k ’F) C
e (k;+k;

’I t_ t ’)exPLi12
~~

(t_t f)3j (20)

where we have made use of c (~ )c *(~~ ) = iS U~~ ’ ) l e  (~ )j2 in the

derivation . Upon Fourier transformation of (20) with respect to time ,

we then ob ta in

w2~ k
2 c~ = - ~~ w 3 (k A 2Jd 3k~ 

~~~~~
‘) 

{(
~~~~~1~~~~t)2

x G~~ ~~~~~~~ + 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2 1)

where~~~~(~~’) k~O~’) l~ /8~ is tl’e spectral energy density of the pump

spectrum. In the further evaluation of (21), we emp loy a cyl indr ical

coord inate system aligned with the ambient magnetic field in which ~

(or 
~~
‘) deno tes the azimuthal angle. As a consequence , the d ispersion

equation takes the form

m r
— k202 = — !.~~~~~ w~ (kX ) 2 Id 3k ’ °

s 2 m
1 

e e j fl
oTe

x 
w 1 2

f~~~)~~~
’) (22)

(u~ + u )
2 — (w_3u

e
kk ’ X

~
cos

~
p + u 2)2

9 
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. - - - -- ...- --— 
_________________

where iuI ( k\ ) 2 / 2 , cos~ ~~~ + ~~~~~~~~~~~~~~~~~~~ k ’ ,

- 
~ ~~~~

- (k +k ’~~) ( k ’ k~ -k~~k~~’ ) - -4 k~~k’  ~k,~’(kcos~’-k11)cos~~ (2 3)
UI

1 1 k~
’k’~~ f(k k’~~~~~~~~k

7
~~s
7
~i)

- 
~~~

‘ 

[k~ k i4 ’ ( k 2 +k’~~) _ k  k ’ (k~+k~~ )cosi~]
- 

~~~~~~~~~~~~~~~~~~~~~~~ 
‘ 

(24 )

+ +

k 
~ &— bw k k ’  \ t O ~~~ + ii ,, ), (2  5~k

and i — k~ s1n~~ L (k-’ k’ 2)- - 4k 2k ’~~t os-
’i~~ ~~~.

A. ThL’ D ipo l e  A p p r o x  m a t  t ti~~

Ili, ’ d t~’o I ~ ipp rilx I m i t  [on I recovered in th~ 1 imI t In w h i c h  t h e

w a v e l e n g t h  oh t h e  pump tends to [ul [n i t  v wh itt’ the wave! engt h spread

tends to zero , and we w r I t e  W ( ~~’) W ( 2 n k ~~)
1 i S ( k ) s S ( k ~~) .  Ambi g u i t y

rena in s, however , in the di  rt~c t ion oh t h e  e l ec t  r Ic I tel d of the pump ,

and we choose ti~ is ditect ion to be pa ral its! to ~~ by set t ing

cosiji — k
11/k , ~~~ — (k~ 

1 k r n ’ )~~~~
.‘ / ~~ and u , — 0(1 . . , we take the  limit

0 by le t t t u g  k~ 0 fIrst) . As a consequence , the d i spersion

equation in the di pole li m i t Is of the form

m k- , 14
-‘ I e ‘ 0

— k~ i~~
. — -— .~ - -

~
. .

I in k fl t t ’ il ’
O t ’  k.

10
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Equation (26) can be analyzed graphically by plotting the left

and r igh t  hand sides ver sus w 2 . This is shown schematically in Fig. 1

in which

L(02) — ~
2 - k ’c~’ ,

anti
12

~ ~ 
in , kj~ i4~, A KR(t&c~ ) — -

~~ -i - ( I . , 
1 m k ii T ~~‘ 

—

o c  k

It is ~- lear t h a t  t he  i n s t a b i l i t y  is p u r e l y  growin g ( i . e .  . has z e r o  rea l

f rt’quent-y) , and 01’ cii rs on l y  I f  R ~~ — 0) .. I. ( c c ’ — 0) . The t hre ~sho Id

cond i ti on • t her e for e  is of t l i t ’ forts

~~ (i~
:’
~~ + 

~~

‘ 

+ ( 2 7 )

where we hav e chosen -

~ 

— 1. It is important  to recogn i~~t’ t ha t  wh i  I i ’

2 has been assumed to he sma ll , the  e f f e c t  of the  magnet it’

field on the threshold I’Ofld I tion can he significant when (k \ )

and (k~ /k )-’ ~ 1

The so hit ion to Eq.  ( 2 b ’~ takes the form

- 

~ ~ :~~ -~ [~ 
— 

~~~~~ + 

~~~~

‘

(28)

As ci result, we find immediately that

- — ~ 
in ~~ ,

~~12 n T  e
~ k o e

11

~u~iii 
‘
~~~~~~~~~~~~~~~~~~~~~~-



— -

~~~~~~

, - .

in the limit in which m
e

/m
i 

< 3(kA ) 2 + (12e e~
2 

~ /k) 2 < Wo /fl oTe • In
the opposite case, in which 3(kA )2 + e e ~

2
~~j’~~

2 < W
0/ n T  and

r n / mi, we find that

- 4 ~ ~~~~~~~~~~ 1n~~ 

~~~~~
. 

~~~~ 
+ 

~~ k

2)( +

so that peak growth occurs for

(kA ) 2 -~~ .

~~

. 

~ e 
(2 + ___ - 

ci~ k
2J

with a growth rate of

- 

~ 
(
~~ 

w )2 

(
2 + 

YiTi)_2 
w~~. (30)

B. The Case of a Monochromatic Pump

In this case we assume that the pump spectrum is aligned with the

ambient magnetic field and choose W
0(k’) = W

0
(2rk~ ’)~~~6(k~ ’)d(k1~’_ k).

Thus , we have that cosip = k11/k , tE~ = k~k
2 [(k2 + k2)2 - 4k~k2J— ’,

i’22 / k2~~1 e Iu~ =~~~ — e

and

122 k k
w 2 = G  2 •

It is impor t an t to re cog n iz e that  the value of ® f or k~ — 0 and

k.~ — ± k0 is dependent on the order in which the limit is taken. The

source of the ambiguity is that  this limit implies an interaction with

12

~
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.i dipole (1.t~. , ~ ~~~
‘ — 0) daughter wave , and one must then specify

t h e  d i r e c t ion  of the oscilla tion electric field of the daughter waves.

We ’ sh a l l  assume In t h e  remainder  of t h i s  w ork  t h a t  the wave electric

tL~ld of the daughter spectrum Is p .irallel to the pump (and t o  ~~~) in

t h i s  l i m i t . so t h a t  (k  — 0, k~ — .1. k )  — 0. With this borne in mind ,

Fs~s. ( 2 2 2 — ~~2 S )  can he shown to reduce to the following quartic

equation in

m 14
- k c )~~.- ,~~2 (. -~~~2 - ~~ ~~~~~~~~~~~~~~~~~~ 

(31)

i5he r e

— 
( k ,k~ 

~\ ~ I ‘ e (32)
k / - (k~+k 2 .1 2k k

C 0

i.q. i. 11 2 has been solved n u m e r i c a l l y  t o r  a wide range of

wave’ lengths and ii rec t tons oh pr opagat  ion under  the assumpt ions that

k — 0. 1) 1 . 1 — I , and — ‘i ’ l . Some typ ica l  spec t ra are shown inI t ’ I

F I~~s. 2 and ~~, in w h i c h  we plot •Y/we 
(where ‘~ • line) versus k\

~ 
for

several values of ~ idefined to be the angle between and ~~~) and

In Fig. 2 , we d i sp lay the typical characteristics of the

sp ectrum for t~’ /n T — 0.001 and (a2 f~ I’~ — 0, and (b )~ Ic 0.05.
C C e ’ e e e e

The dotted line indicates the pump wavelength . It is clear that , as

~xpec t d, the spectrum is independent of 
~~ 

fo r  the case of parallel

pr opagation , for which peak growth occurs at k k for  the parameter s

chosen.  It should he remarked , however , that this ts not a general

c h a r a c t e r i s t ic of the growth rate of parallel propagating modes, and

that peak growth occurs at k ~ k for 140 / n T  0.001 and at k ~
‘ k0

13
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for W / floTe 
-> 0.001. For oblique angles of propagation the growth

rate vanishes in the vicinity of k k
0, 

and a double peaked str uc ture

appears which describes the parametric decay and oscillating two

stream instabilities. The presence of a magnetic field , typically, has

a stabil izing influence on the obliquely propagating modes, in both

cases shown in Fig. 2, the growth rate of the oscillating two stream

ins tabilit y decreases rapidly to zero with increasing e , and the range

of an~z l e s  over wh ich instabilit y is possible decreases with increasing

~~~. The parametric decay instability is comparativel y less sensitive

t o  the ~i.l~ netj~ f ield strength for the given parameters.

Ad2itional structure appears as the pump amplitude is increased ,

as shown in Fig . 3 fo r  ~ In T — 0.01. In this case , the range of e

ov er  which instab ilit y for k : k occurs is enlarged , and addiiional

structure is found when k k .  Specifically, the grow th ra te does no t

vanish for k k , and an add itional peak is found when k k0 for

small ~ in the field free limit.

In order to shed light on the dependence of the growth rate on e

and ‘
~e~~ e’ 

we plot the instability threshold , deno ted by (W
o/ n l e)thr ,

vers us k
~
i
e in Fig. 4 for (a) ~e’~

’
~e 

— 0, and (b) 
~e

/’U e 0.05. It is

eviden t that (~4 /n I ) “ (k\ )
~ for  ~ — 0

0 as in the lim it of a
o o e t h r  e

dipol e pump (27); however , such behav ior breaks down when k k0 for

obl ique ang les of propaga tion. Further , it is clear that in order to

exci te a full angular spectrum for k > k0 a threshold of

W ‘n I ~ 0.002(0.08) is required for ~ Ic — 0(0.05). This is shown
0 o e  e e

in more de tail in Fig. 5, in which we plot (W
o/flo

T
e
)thr 

versus 
~e~~ e

for several values of ~ and (a) k — k
0

, and (b)  k — 2k0.

14



The dependence of the angular range of the osc i l l a t ing  two

stream instability on is shown in Fig. 6 in which we plot the maxi-

mun growth ra te  “i’ for  k ‘ k ve r sus 8 fo r k A — 0.0 1, 12 Ic — 0,max o o e  e e

0.05 , and 0.10, (a) W/n T — 0.001 , and (b) Wo/flole — 0.01. Evidently,

when W In T - 0.001 , instability occurs only for 0 ~ 10° in the
0 C C

field—free limit , and decreases sharply in angular extent with

inc reasing ~~~. As the pump amp litude increases the angular  spread of

the exc i ted  spec t rum also increases , as shown in the figure for

14 In T - 0.01. In addition , whil e ‘~ is no longer a mono ton ica l lyo o c max

decreasing function of 12 /c for all 0, subs tan t ial red uc t ions in the

growth rate are seen to occur over a wide range of angles as 12 /c

increases. The varia tion of y with 12 Ic is shown more clearl ymax e e

in Fig .  7.

Finally , we point out that for W / n T — 0.001 and 0.01, the

parametric decay instability shows small variation with 12 /We and 0

in relation to the oscillating two stream instability. This is due to

the fact that these pump levels are above thresholds for peak growth

with k ‘~ k .  This is demonstrated in Fig. 8 in which we plot ‘hrrnax for

k ~~ k versus 121w for 0 — 0~~, 200, 40°, and 600, k A  — 0.01 , and

(a) W / n T  0.001 and (b) 14 m oTe — 0.01.
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IV.  SUMMARY AND DISCUSSION

We have studied the parametric decay and oscillating two stream

ins tabi l i t ies  in the presence of a weak external magnet ic  f ie ld , and

der ived a dispersion equation which can t reat  the case of pump spect ra

w i t h  sma l l , but  f i n i t e , spreads in wavelength.  The resul t  is val id  for

low frequencies and weak magnetic fields in which i2~ ~.— c <‘ . k y

(wher e 12~ is the ion gyrofrequency )  and >> 12~ . Since U ~ kc , we

must also require tha t  k / k  >> me/m i. I t  should be pointed out tha t in

( 7 ) w 1 2  desc r ibe t he upp er and lowe r hybrid frequencies respectively,

and that in this limit, therefore , the high frequency oscillations may

a l so be conside red as upper hybrid waves.

A few remarks are in order concerning the relationship between the

L 

directions of the ambient magnetic field , the pump spectrum , and maximum

growth. For the cases considered here , in which the pump spectrum is

aligned with the ambient magnetic field , the direction of maximum growth

is found to be colinear wi th  as well. While it is d i f f i c u l t  to deter-

mine a general rule concerning this relationship, insights into the

general angular spectrum of the daughter waves can be obtained by con-

sideration of the dipole limit. In this case we let (0 ,i~~) and (0 ,~~)

denote the polar and azimuthal angles of the pump and daughter waves

respectively, and find that — (12~f2c )(sin28 — s i n~
’ 0 ), — 0,

cos~, — cosO cosO + sinO sinO cos(9—~~ ), b — sin 2
~’ , 4 w~~, and

— cos~~ij,. As a consequence , the ins tab i l i ty  threshold is of the

form 040/fl oTe) thr  — 2 cos 24~ fl~~(l + ‘YiTi/Te
) Minimizing th is  wi th

respect to 8 for constant (k ,~~) yields

18
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t a n  — t an  t t~~ cos(.,—~~,’h — : + 

~~~ 

ces .~e
0)

~ l] 
‘

(33)

Fx amtu.it ion ot  ( 11 ,,t tows that  the minimum threshold and , hence ,

maximum growth , fo r  g i v en  k , is colinear with the pump wave only (1) in

th e ’ f i e l d — I t  et l i m i t ,  and i .’) tot t~ — 0 (i.e., when the pump and are

ali gned in a magnet i eel p1 ~esma

For th sake ~‘f simp licit y . solutions to Eqs . (22 ’h—(2S2 are

r e s t r i c te d  t o  t h e ’ e ase s of d ipol e and m on o c h rom a t i c  pump spectra which

ar~ in .11 igument with ~~~~~~ and a substant t a t  mod i t  [cat  ion of the a n g u l a r

ha i ac t  er ot  t he se  I nstah ti l t it’s is found to occur when k ’ \ /~~~
‘

e t’ t’

In part i cu I .er , i n st  .ib l i l t  v thresholds tend to he’ enhanced , and grow th

I I  t es d c c  t e a se d  for waves p rop aga ing at .in ang.l e’ w i t h  respect  to

We . c o f l e ’ I tide, th ere ’ tore , th at a s m a l l  ex t  erna I m agnet  i e~ I i t’ 1 d act s as a

s t a b i l i z i n g  i n t l u e n c e  f o r  waves w i t h  finite k and , since k\ I tot
C ’

many ap p i  I e d t  t ons  of j ’r a c  t l e a I interest , can he an i m p or t  ant  cons ide ’r a —

t ion in the st  .ih l it . e  t Ion of b e a m — p lasma interact ions  even t o t  weak

I ie ’ld levels . F (n a t  lv , be ’cause  ht~ dynam ical equations (or the osc ii—

Iat lup two s t r e a m  and parametric dt’cav i n s ta b i l i t  h’s are ’ the F o u r i e r

t ransforms of the equa t ions w h i c h  def ine ’  l .angmu I r sol it  ons 1 3 , we specu—

l .ite t h a t  w e ak  magnetic fields may act to inhibit soliton collapse in

t he ’ d i re c t  Ion t ransverse  t o

I 

.~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ 
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